From sick people to sedentary people
Based on physiological considerations, as well as previous research that has unfortunately mostly been conducted with sick participants, Liu et al. hypothesizes that the provision of spplemental keta-acids (KAS) would be able to improve exercise tolerance, training effect, and stress-recovery in healthy subjects, as well. In order to validate this hypotheses, the researchers recruited 36 untrained male volunteers and assigned them randomly to one of the three study arms. Depending on which of the arms the subjects belonged to, they had to ingest one of the following visually identical supplement mixes
- AKG - 0.2 g/kg body weight AKG in the form of Na-AKG and Ca-AKG
- BCKA - 0.2 g/kg b.w. α-ketoisocaproate, KIC, 47.4%; α-ketoisovalerate, KIV, 30.0% and α-ketomethylvalerate, KMV, 22.6% from Na-KIC, Ca-KIV and Ca-KMV
- Placebo - energy and sodium, as well as calcium equivalent with glucose, CaCO3, NaHCO3
Endurance + HIIT-like sprinting = temporary overtraining aka overreaching
overtraining] training level" (Liu. 2012). To make that possible, the 33 untrained subjects (BMI~24kg/m²; age 25-26y) who made it through the four week protocol (three dropped out) performed the two-part exercise regimen consisting of
- 30 minute treadmill running at the anaerobic threshold run followed by,
- 3 x 3 minute sprints (all out; HR ≥ 95% max)
The diet was comparable among the different groups and did not change throughout the study period (total caloric intake: 2509 ± 115 kcal/day; 49.2% carbs, 30.3% fats; 17.1% protein and alcohol 3.4% *wtf!*) and no other supplements were allowed to make sure that the results would not be skewed by copious amounts of sodium bicarbonate ;-)
Note: Since KAS are meant to buffer ammonia build-up while sodium bicarbonate, aka baking soda will buffer blood pH (and inhibit the formation of lactic acid), they would stack well (click here to read more about baking soda and the latest study about the beneficial effects of baking soda on high volume leg days)!
Surprising results: Longer, harder, ...Just as the researchers had assumed, the relatively small amounts supplemental α-keto acid (KAS), of which the scientists expected that they would reduce the exercise induced hyperammonemia (=accumulation of ammonia, a breakdown product from the oxidation of amino acids in the blood) Banister and Wilkinson held (at least partly) responsible for the fatiguing effect of longer lasting high intensity exercise (Banister. 1990; Wilkinson. 2010).
Unfortunately, the scientists don't make it 100% clear what the "training time" they measured was, but I hope that you would agree that it is sensible to assume that this refers to the timespan during each workout at which the subjects actually reached the prescribed target heart rates, i.e. the anaerobic threshold for the endurance part and 95%+ of their individual HRmax for the sprints.
... less exhausting and more productive
Figure 2: Somatic and emotional RESTQ-sport scores (top, middle), as well as isokinetic peak force development (Liu. 2012) |
- the general stress levels were markedly increased in the control group during the third week, but did not change in BCKA group; a significantly higher baseline stress level in the AKG group make the data difficult to interpret, but it can still be assumed that the "stress-buffer effect" was similar to the BCKA group, as the levels remained constant over the whole 4 +1 week study period
- the somatic complaints showed a slight increase in the control group, but were overall not statistically different between the groups (see figure 2, top)
- the emotional exhaustion did increase significantly in both, the control and the AKG group, but it does not appear certain that the slight disadvantage the AKG group appears to have compared to the control group is more than statistically significant; after all, thebaseline general stress levels were also higher and could be a confounding factor here (see figure 2, middle)
- increases in torque & isokinetic strength only in the AKG and BCKA groups and
Remember: Ergogenics allow you to work harder - in other words, you got to do more, not less!
Overall the data does still support something people tend to overlook and supplement manufacturers and vendors like to disguise: Ergogenics don't build muscle, strength or make you run faster over night. Regardless of the exact mechanism by which those compounds work, it in the end always the increase in training intensity and/or volume (or your ability to increase the latter faster without running the risk of overtraining), which will eventually help you to make greater or faster progress - or as the subheading says: You got to work harder / more - not less!
That said, despite the fact that AKG, did perform astonishingly well (so well indeed that the occasional beneficial study result from arginine-alpha-ketoglutarate =AAKG studies could actually be a result of the AKG part of the purported NO booster), the alpha-keto acids of the three BCAAs appear to be the better supplement choice for beginners in overreaching phases... but wait! Let's be honest, is it really advisable for a beginner to employ an advanced training technique like overreaching? And wouldn't you advice him or her to strength train if strength (remember, the only exercise parameter with significant improvements, in the study at hand) was his / her goal? I would think so...
Bottom line: The study is nice, the results are impressive, but the study population (untrained individuals) and their diets (low protein, low fat variety of SAD diet + a beer every evening *hello?*) don't really allow for conclusions to be drawn as far as the effects of keto acids, i.e. the effects of both AKG, as well as the BCKAs, on trained athletes / seasoned gymrats with adequate protein intakes on reasonable training regimen is concerned. To cut a long story short, I would not go and buy any of those keto acids before we don't have at least a single independent, peer-reviewed study that would confirm their efficiacy in a group of trainees who are at least experienced recreational athletes. It would obviously be even better to see those trainees supplement with KAS on top of a protein shake, creatine and maybe BCAAs while they eat a protein rich, nutritionally balanced whole-foods diet (like you?), but let's be honest, I don't think we will see a study like that anytime soon, ... but in case we do, you know where you are going to read about the results first, right?
References
- Banister EW, Cameron BJ: Exercise-induced hyperammonemia: peripheral and central effects. Int J Sports Med 1990, 11(Suppl 2):S129–S142.
- Kellmann M, Kallus KW. Recovery-Stress Questionnaire for Athletes. Human Kinetics. 2001 ISBN-13: 9780736037761
- Liu Y, Lange R, Langanky J, Hamma T, Yang B, Steinacker JM. Improved training tolerance by supplementation with alpha-Keto acids in untrained young adults: a randomized, double blind, placebo-controlled trial. J Int Soc Sports Nutr. 2012 Aug 2;9(1):37.
- Wilkinson DJ, Smeeton NJ, Watt PW: Ammonia metabolism, the brain and fatigue;
revisiting the link. Prog Neurobiol 2010, 91:200–219.